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Towards idempotent reduced density matrices via particle-hole duality:
McWeeny’s purification and beyond
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Generalizations of McWeeny’s purification formula are developed within the formalism of the particle-hole
duality from the theory of reduced density matrices. Each of the generalized purification formulas is expressed
as a sum of the one-particle reduced density matrix~1-RDM! and a finite series in the product of the one-
particle and the one-hole RDMs, a product which vanishes in the limit that the 1-RDM is idempotent. Two
categories of purification formulas are explored:~i! formulas which treat the ‘‘occupied’’ and the ‘‘virtual’’
occupation numbers equivalently and~ii ! formulas which treat these occupation numbers differently. The latter
category includes and extends the purification formulas derived in the context of the 1,2-contracted Schro¨-
dinger equation@D. A. Mazziotti, J. Chem. Phys.115, 8305 ~2001!#. While the McWeeny purification mini-
mizes the absolute error in the occupation numbers quadratically, the generalized purification formulas exhibit
faster than quadratic convergence of the 1-RDM towards idempotency. Application of these purification for-
mulas in existing algorithms for linear scaling will be explored and discussed including illustrative calculations
on sodium wires of length 10, 20, 30, and 40 atoms.

DOI: 10.1103/PhysRevE.68.066701 PACS number~s!: 02.70.2c, 71.15.2m, 31.15.2p
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I. INTRODUCTION

Computation of the electronic structure of large-sc
molecules requires algorithms which scalelinearly with the
numberN of electrons. Linear-scaling algorithms have be
developed within the last decade for semiempirical, tig
binding, Hartree-Fock, and density-functional methods
which the many-electron system is mapped onto a o
electron model@1–11#. Any one-electron reduced Hami
tonian, including a Fock or Kohn-Sham Hamiltonian, has
well-known property that the determinant of itsN lowest
orbitals is the wave function for theN-particle system. The
effective one-electron Hamiltonian from Hartree-Fock
density-functional theory is traditionally diagonalized at ea
iteration to produce a set of molecular orbitals. However,
process of diagonalization scales asr 3, wherer is the rank of
the one-electron basis set. The key to achieving a lin
scaling algorithm for a one-electron model is to comp
directly the one-particle reduced density matrix~1-RDM!
without determining an orthogonal set ofN orbitals.

The main difficulty with using the 1-RDM as the bas
variable is that it must be constrained to correspond to
N-particle Slater-determinant wave function. Such co
straints are known asN-representability conditions. Fortu
nately, the ensembleN-representability condition for the
1-RDM was derived by Coleman@12,13#: the eigenvalues o
the 1-RDM, normalized toN, must lie in the interval@0,1#.
Any 1-RDM that derives from anN-particle Slater determi-
nant has the more restrictive condition that its eigenval
must be zero or one, that is, the 1-RDM must be idempot
The process of mapping an arbitrary 1-RDM onto an ide
potent 1-RDM is known aspurification. By employing only
matrix multiplications, linear-scaling purification formula
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may be designed to converge iteratively to an idempot
1-RDM. McWeeny derived the most widely employed pu
fication formula@14#.

Recently, there has been interest in the following qu
tion: can McWeeny’s formula be improved in terms of acc
racy and efficiency@5,15–17#? Both Kryachko@15# and Ho-
las @16# examined a generalization of McWeeny’s formula
higher orders. Kryachko’s work overlooked the importan
of purifying the occupation numbers associated with the v
tual orbitals. Holas corrected Kryachko’s work to includ
both occupied and virtual orbitals, but the analysis of e
ciency in comparison with repeated applications of
McWeeny’s formula was inconclusive. We also extend
Kryachko’s work in another direction by deriving purifica
tion formulas, where the occupied and the virtual orbitals
corrected unequally@5#. Very recently, Niklasson@18# inde-
pendently derived and tested formulas from this second c
of generalized McWeeny transformations. In this paper@19#
a formalism, known as theparticle-hole duality @20–26#,
will be introduced from the field of reduced density matric
@23,27–30# to extend, synthesize, and evaluate efficiently
two classes of generalized purification formulas. Several
mulas will be shown to exhibit faster convergence to ide
potency with the same number of matrix multiplications
the repeated application of McWeeny’s formula.

A quantum system may be equivalently described in ter
of the probability of a particle being present or the probab
ity of a particle being absent. The absence of a particle
also called ahole. The mathematical equivalence of the
two perspectives, which is akin to the equivalence of d
scribing a glass as half empty or half full, is known as t
particle-hole duality. Every N-particle system may be
equally well described by anN-particle wave function or an
(r 2N)-hole wave function, wherer is the rank of the one-
particle basis set. Just as integration of theN-particle density
matrix over all but one-particle produces the one-parti
RDM, integration of the (r 2N)-hole density matrix over all
©2003 The American Physical Society01-1
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but one hole produces the one-hole RDM. In the absenc
particle interactions theN-particle wave function is, as we
previously mentioned, a determinant of the lowestN orbitals,
and the (r 2N)-hole wave function is a Slater determinant
the remaining (r 2N) orbitals. Furthermore, in the
interaction-free case, the one-particle RDM and the one-h
RDM areN representable if they are~i! normalized toN and
(r 2N), respectively,~ii ! Hermitian, and~iii ! idempotent.

The present exploration of purification differs signi
cantly from previous work, in that we explicitly examine th
effect of purification onboth the one-particle and the one
hole RDMs. The relationship between the 1-particle RD
and the one-hole RDM places an important restriction on
structure of the purification formulas. We reveal the partic
hole structure of both McWeeny’s formula and the high
order generalizations by expressing these formulas dire
in terms of the particle and the hole 1-RDMs. Finally, with
the framework of the particle-hole notation, purification fo
mulas are derived which converge more efficiently than
McWeeny formula to idempotent RDMs. An extension
Niklasson’s trace-correcting algorithm@18# is proposed for
using these higher-order formulas to purify one-elect
Hamiltonians to their idempotent ground-state 1-RDMs. A
plication of these purification formulas in existing algorithm
for linear scaling will be explored and discussed includi
illustrative calculations on sodium wires of length 10, 20, 3
and 40 atoms.

II. THEORY

After sketching the salient features of linear scaling w
the 1-RDM, we develop in Sec. II B purification formula
from the perspective of the particle-hole duality.

A. Linear-scaling overview

Many useful methods in electronic structure, from t
Hartree-Fock method to practical density-functional theo
approximately map the many-electron problem onto o
electron. For linear scaling the 1-RDM rather thanN or-
thogonal orbitals must be computed at each self-consis
iteration. Optimization of the energy for theN-electron sys-
tem may be expressed as

E5min Tr~KD !, ~1!

where K is the one-electron reduced Hamiltonian and
1-RDM D is subject to the followingN-representability con-
straints: ~i! the trace of the 1-RDMD equalsN, ~ii ! the
1-RDM D is Hermitian, and~iii ! the 1-RDM D is idempo-
tent, that is,

D2D250. ~2!

Mathematically, we have a constrained optimization probl
to be solved.

Practical realization of linear scaling with the 1-RD
occurred when iterative approaches were developed fo
efficient solution to the constrained minimization proble
Two broad genres exist for the direct determination of
06670
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1-RDM: ~i! gradient-based methods@1–5# and ~ii !
purification-of-the-Hamiltonian methods@6–8,10#. An ex-
ample of the gradient-based methods, which we rece
developed, is the iterative solution of the 1,2-contrac
Schrödinger equation~1,2-CSE! with reconstruction of the
2-RDM from the 1-RDM@5#. The 1,2-CSE suggests the fo
lowing iterative ‘‘gradientlike’’ update for the 1-RDM,

Dn115Dn1l~D̄nKDn1DnKD̄n!, ~3!

whereD̄n(5I 2D) is the one-hole RDM andI is the identity
matrix. While the correction for the 1-RDM is accurate f
an idempotentDn , the new trial 1-RDMDn11 may only be
approximately idempotent. Hence, before the next iterati
the trial 1-RDM must be purified. Similar purification is ne
essary in other gradient-based algorithms.

In the second category of methods a linear mapping of
one-electron reduced Hamiltonian,

D̃5l~mI 2K !1gI , ~4!

produces a 1-RDMD̃, that is, a Hermitian matrix with oc-
cupation numbers between 0 and 1 whose appropriate p
fication can produce the idempotent ground-state 1-RDM
the N-electron system. The parameterl may be computed
from a knowledge of the maximum and minimum eigenv
ues ofK, the chemical potentialm, and a parameterg from
the purification formula@3#. The technique works becaus
the reduced Hamiltonian and the idempotent 1-RDM sh
the same eigenfunctions. Only the occupation numbers oK
must be corrected through a mapping followed by purific
tion. The need for efficient purification in this approach is
paramount importance. McWeeny’s formula is the most co
monly used purification@14#, and in the following section we
explore purification from the perspective of the particle-ho
duality.

B. Particle-hole purification

The one-particle and one-hole RDMs satisfy the sim
relationship

D̄1D5I , ~5!

whereI is the identity matrix of rankr, the total number of
orbitals. This relationship is valid for one-particle and on
hole RDMs derived fromany wave function. If they derive
from a determinant wave function, then they must also s
isfy the relation

D̄D50. ~6!

Satisfaction of Eqs.~5! and~6! is necessary and sufficient fo
the one-particle and one-hole RDMs to arise from the in
gration of anN-particle density matrix assembled from
single Slater determinant. Substitution ofD̄5I 2D from Eq.
~5! into Eq. ~6! yields the more familiar idempotency cond
tion in Eq. ~2!. The condition in Eq.~6! expresses succinctly
a fundamental property of a noninteracting system, which
that the subspace spanned by the occupied orbitals ofD must
1-2
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be orthogonal to the subspace spanned by the ‘‘occup
orbitals of D̄. If the hole and the particle RDMs are bo
idempotent, then it follows from Eq.~5! that the unoccupied
orbitals ofD are the occupied orbitals ofD̄ and the occupied
orbitals ofD are the unoccupied orbitals ofD̄. In many parts
of the paper we will refer to the occupied orbitals and oc
pation numbers ofD as theparticle orbitals and particle oc-
cupation numbers and to the unoccupied orbitals and o
pation numbers ofD as theholeorbitals and hole occupatio
numbers.

The challenge of purifying a 1-RDM to beN represent-
able with a Slater determinant preimage lies in correct
both the particle and the hole occupation numbers. Fo
given 1-RDM let us denote the maximum error in a parti
occupation number byep and similarly, the maximum erro
in a hole occupation number byeh . Kryachko@15# proposed
the following ‘‘high-order’’ iterative purification formulas:

P0,n21~D̄ !5D̄n, ~7!

wheren>2. The subscripts onP̄0,n21(D̄) indicate the orders
through which the errors in the occupation numbers of
occupied and unoccupied orbitals ofD̄, respectively, vanish
The 1-RDM uponinput and output is in its one-hole form.
The simplicity of this formula, in comparison with Kryach
ko’s polynomials inD @15#, highlights one advantage of us
ing both particle and hole notations. One iteration of t
formula reduces the error in the particle occupation numb
from ep to ep

n ; however, as also noted by Holas@16#, the
error in the hole occupation numbers does not improve,
is, eh becomes (12eh)n which is still O(eh). ReplacingD̄
with D in Eq. ~7! yields the formula

P0,n21~D !5Dn, ~8!

where n>2. With the input and the output 1-RDM in it
particle form, it is the hole occupation numbers that are
proved while the particle occupation numbers remain inc
rect toO(ep).

In the context of our research on the 1,2-contracted Sc¨-
dinger equation@5# we proposed two new purification formu
las: ~1! the HD formula in which first the particle occupatio
numbers and then the hole occupation numbers are pur
through a nesting of Eqs.~7! and ~8! with n52 and~2! the
DH formula in which the order for applying particle and ho
purification is reversed. Mathematically, the HD and the D
formulas for the one-particle RDM are given by the comp
sitions

P1,1
HD~D !5P1,2„I 2@P1,2~D̄ !#… ~9!

5~ I 2D̄2!2 ~10!

and

P1,1
DH~D !5I 2P1,2„I 2@P1,2~D !#… ~11!

5I 2~ I 2D2!2. ~12!
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The formulas are readily interconverted by switching t
roles ofD andD̄ and employing the relationship betweenD

and D̄ in Eq. ~5!. Under the DH formula the errors in th
particle and the hole occupation numbers are reduced by
following mappings:

eh→2eh
22eh

4 ~13!

and

ep→4ep
224ep

31ep
4 . ~14!

Importantly, the errors in both the particle and the hole o
cupations are reduced to second order. However, becaus
applied the hole purification first, the coefficients of the qu
dratic error~2 for eh

2 versus 4 forep
2) favor the hole purifi-

cation. Similarly, the error reductions for the HD formul
obtained by exchangingeh and ep in Eqs. ~13! and ~14!,
favor the particle purification.

Averaging the DH and the HD purification formula
yields the well-known McWeeny~MW! purification

P1,1
MW5

1

2
~P1,1

HD1P1,1
DH! ~15!

53D222D3, ~16!

where the error in either the particle,ep or the hole,eh
occupation numbers, which we denote by a generice, is
given by the average of the errors from the HD and the D
formulas

e→3e222e3. ~17!

While the HD and the DH formulas are fourth-order polyn
mials in D ~or D̄), they may be evaluated intwo matrix
multiplications such as the third-order polynomial McWee
purification @5#. From the traditional expression of th
McWeeny formula in Eq.~16! it is difficult to see immedi-
ately that the errors in the particle and the hole occupa
numbers are treated with equivalent purification.

The particle-hole symmetryof the McWeeny purification
may be made more manifest by~i! writing the purification as
a common correction to the one-particle and the one-h
RDMs and ~ii ! expressing the MW formula with both th
one-particle and the one-hole RDMs. McWeeny’s purific
tion for the one-particle and the one-hole RDMs may
constructed untraditionally through theadditionof correction
terms

P1,1
MW~D !5D1D~D ! ~18!

and

P1,1
MW~D̄ !5D̄1D̄~D̄ !. ~19!

For the particles and holes to be purified equivalently,
corrected particle and hole RDMs must satisfy Eq.~5!, that
is,
1-3
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P1,1
MW~D̄ !1P1,1

MW~D !5I . ~20!

BecauseD and D̄ also satisfy Eq.~5!, it follows that

D~D !52D̄~D̄ !, ~21!

and, hence, we only need to determineD(D). We now dem-
onstrate that two conditions, satisfied by the McWeeny f
mula, completely determine the functional forms ofD(D):
~i! the correction must remove the first-order errors in b
the particle and the hole occupation numbers and~ii ! from
Eq. ~21! the correction must change signs upon exchang
the one-particle and the one-hole RDMs. From the first c
dition it follows that the correction must have one factor ofD

and one factor ofD̄, that is,

D5aDD̄F~D,D̄ !, ~22!

where a is a scalar and the remainderF(D,D̄) is a first-
order polynomial inD and D̄. Condition ~ii ! can only be
satisfied if F(D,D̄) is a scalar multiple of the differenc
between the one-particle and the one-hole RDMs, that
F(D,D̄)}D2D̄. Substituting this expression into Eq.~22!,
we find

D5aDD̄~D2D̄ !. ~23!

The constanta, chosen to cancel the first-order particle a
hole errors in the RDM, is unity. Therefore, we have a n
particle-hole expression for McWeeny’s purification

P1,1
MW~D !5D1DD̄~D2D̄ !. ~24!

Unlike the standard expression this formulation of the M
purification directly highlights the particle-hole symmet
since exchanging the particle and the hole RDMs gives

P1,1
MW~D̄ !5D̄2DD̄~D2D̄ !, ~25!

where the correction is the same as for the particle ma
except for the sign change.

Building upon the work of Kryachko, Holas derived
higher-order polynomial generalization of McWeeny’s fo
mula which corrects the errors in both the particles and
holes through ordern. Like the McWeeny formula the Hola
hierarchy of purification formula treats the particles and
holes equivalently. While Holas employed the properties
theb function to generate polynomials inD @16#, the formu-
las may be intuitively derived within the framework of th
particle and the hole matrices. The first-order Holas form
is equivalent to McWeeny’s purification formula. As in ou
derivation of the McWeeny formula, we derive the secon
order Holas formula as a correction to the first-order expr
sion, that is,

P2,2
H ~D !5P1,1

MW~D !1D~D !. ~26!

The second-order correctionD is completely determined by
two necessary conditions:~i! D must remove the second
06670
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order errors in both the particle and the hole occupat
numbers of the McWeeny-purified 1-RDM and~ii ! D must
change signs upon exchange of the one-particle and the
hole RDMs. From the first condition it follows that the co
rection mustfactorize into two factors ofD, two factors of
D̄, and a first-order polynomial term. By the second con
tion this final factor must be a scalar multiple of the diffe
ence between the one-particle and the one-hole RD
Hence, the correction has the form

D~D !5a2~D2D̄ !D2D̄2, ~27!

where the constanta2, which must be chosen to cancel th
second-order errors in the McWeeny purification, equ
three. The second-order Holas correction may thus be wri
as

P2,2
H ~D !5P1,1

MW~D !13~D2D̄ !D2D̄2. ~28!

In general thenth-order purification formulas of Holas ma
be cast in the particle-hole notation as the 1-RDMplus the
product of (D2D̄) and a power series inDD̄,

Pn,n
H 5D1~D2D̄ !(

j 51

n

a j~DD̄ ! j , ~29!

where each of the scalarsa jP@1,3,10,35,126,426, . . . # is
equal to the negative of the error coefficient forep

j in
Pj 21,j 21

H ~note that the error coefficients are negative!. Ex-

changing the particleD and the holeD̄ matrices immediately
shows that all orders of the formulas treat the particles
the holes equivalently.

Because the particle-hole notation represents the fac
ization of the purification formula into particle and hole com
ponents, it facilitates the design of fast multiplicatio
schemes. For example, this second-order correction ma
evaluated in three matrix multiplications:

P2,2
H ~D !5P1,1

MW~D !13YX, ~30!

where

X5DD̄, ~31!

Y5~D2D̄ !X, ~32!

P1,1
MW~D !5D1Y. ~33!

At most three matrices need to be stored simultaneouslyD,
X, andY. Similarly, the generalnth-order formulas may be
evaluated efficiently by summing the power series inDD̄ in
n matrix operations and then multiplying the summed ser
by the matrix (D2D̄) for a total of (n11) matrix opera-
tions. For anyn only four matrices need to be stored simu
taneously:D, DD̄, the highest power ofDD̄ computed at a
given time in the program, and the accumulated sum of
series inDD̄. A higher power inDD̄ may be constructed in
memory row by row, while the next-to-highest power ofDD̄
1-4
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is eliminated from memory row by row. Forn>4 the com-
putational cost may be further reduced by partitioning
power series inDD̄ into separate even and odd series. Wh
n is even, for example, we have

Pn,n
H 5D1~D2D̄ !H (

j 51

n/2

a2 j~DD̄ !2 j

1DD̄(
j 51

n/2

a2 j 21~DD̄ !2 j 22J , ~34!

which may be evaluated in a grand total of (n/211) matrix
operations. With this partitioning of the power series for a
n a maximum of six matrices need to be stored at the sa
time:D, DD̄, (DD̄)2, the highest power of (DD̄)2 computed
at a given time in the program, the accumulated sum of
even series inDD̄, and the accumulated sum of the od
series inDD̄. Evaluation of odd orders of purification i
slightly less efficient at (n11)/211 matrix operations for an
odd order ofn.

Although the Holas formulas correct the errors in the p
ticle and the hole occupation numbers through a higher o
than the McWeeny formula, they require additional mat
multiplications. The first-order McWeeny formula as well
the first-order DH and HD formulas require onlytwo sparse
matrix multiplications each, but the second-order generali
McWeeny formula requiresthree matrix multiplications.
How does the efficiency of these higher-order formulas co
pare with the first-order purifications? To answer this qu
tion, one needs to know the order of error correction requi
for a two-multiplication purification to be as accurate as
higher-orderm-multiplication purification if both purification
algorithms are permitted to use the same total numbe
matrix multiplications. For annth-order formula we define
the error of an artificial two-multiplication purification
whose 2n-times repeated application would generate the
ror of thenth-order formula appliedtwice. Theeffectiveerror
xeff(e) in the occupation orbitals after one iteration of t
‘‘artificial’’ two-multiplication purification may be computed
with the formula

xeff~e!5bpeq, ~35!

where

b5an12,

p5
q21

qm21
,

and

q5~n11!2/m.

The symbola is the error coefficient~or prefactor! of the
nth-order purification,n11 is the lowest order of the erro
in the formula, and the exponent 2/m is a ratio of the number
of multiplications in one McWeeny purification to the num
06670
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ber of multiplications in one generalized purification. Th
parametersp and q were determined symbolically with
MAPLE 8 @31# so that applying the functionx 2m times to an
initial error e generates the same final error as applying
nth-order formulatwice to an initial errore. When n51,
m52, anda53, we recover the error in one iteration of th
McWeeny formula, that is, 3e2. Using the effective error, we
compare in the first four rows of Table I the efficiency of th
generalized Holas purification formulas with the well-know
McWeeny purification. Only the even-order formulas a
presented because they are more efficient than their o
ordered brethren. We observe that some of the higher-o
formulas converge towards an idempotent 1-RDMfaster
than the McWeeny formula with the efficiency peaking at t
fourth-order purification which mimics an effective firs
order formula with anO(e2.236) error for every two multipli-
cations. Also given in Table I for each formula is the locati
of the unstable fixed pointin occupation spectrum@0,1#
which determines the boundary after purification between
particle and the hole occupation numbers. The magnitud
the derivative at this fixed point provides a measure for
rate of purification in its vicinity.

The Holas formulas offer one generalization
McWeeny’s purification, while the DH and the HD formula
offer a different generalization in which the particle and t
hole corrections are treated unequally. Let us recast the
rification P0,n21 in Eq. ~8! with n52 as a correction to the
one-particle RDM,

P0,1~D !5D1D~D !. ~36!

Two properties of Eq.~8! determine the correction within a
scalar factor:~i! the correction is a second-order polynom
in D and D̄ and ~ii ! the corrections must vanish in the lim
that D and D̄ are idempotent. For the second criterion to
true with the quadratic constraint the correction must be p
portional toDD̄. Specifically, we find that

P0,1~D !5D2DD̄. ~37!

Similarly, the purificationP0,1 in Eq. ~7!, which involves
squaring the hole matrix, follows from exchanging the p
ticle and the hole matrices,

P0,1~D̄ !5D̄2DD̄. ~38!

Unlike the McWeeny formulas for correcting the one-partic
and the one-hole RDMs in Eqs.~24! and~25!, the corrections
in the purification formulas in Eqs.~37! and ~38! share the
same sign. Consequently, the purified particle and ho
RDMs deviate from their relation in Eq.~5! by the amount
22DD̄. As shown earlier in Eqs.~9! and~11! the composi-
tion of these simple, RDM-squaring purification formula
produces the HD and the DH formulas which are corr
through first order in both the particles and the holes.

The general formula for purification of the particles a
the holes through ordersn and n11, respectively, may be
readily expressed in particle-hole notation as a perturba
of the Holas formulas in Eq.~29!,
1-5
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TABLE I. For generalized McWeeny purification formulas this table reports the accuracy of the particle and hole occupation num
iteration, the number of matrix multiplications per iteration, the location of the unstable fixed point, the derivative at this point, as
an effective errorxeff(e), that is, the error in the occupation numbers after one iteration of an effective two-multiplication purific
Comparing thexeff(e), we perceive that several formulas, especiallyC1,2(D) andC2,3(D), are significantly more efficient than the trad
tional McWeeny purification.

Occupation errorsa Unstable fixed point Effective errorsxeff(e)

Purification formulasb Particles Holes Matrix multiples Location Derivative Particles Holes

P1,1
MW(D) 23ep

2 3eh
2 2 0.5000 1.500 3ep

2 3eh
2

P2,2
H (D) 210ep

3 10ep
3 3 0.5000 1.875 3.5ep

2.080 3.5eh
2.080

P4,4
H (D) 2126ep

5 126eh
5 4 0.5000 2.461 4.5ep

2.236 4.5eh
2.236

P6,6
H (D) 21716ep

7 1716eh
7 5 0.5000 2.933 4.3ep

2.178 4.3ep
2.178

P0,1(D) 22ep eh
2 1 N/A N/A 4ep eh

4

C0,1(D) 24ep
2 2eh

2 2 0.6180 1.528 4ep
2 2eh

2

P1,2(D) 26ep
2 4eh

3 2 0.7676 1.643 6ep
2 4eh

3

C1,2(D) 2864ep
6 96eh

6 4 0.5722 2.825 5.6ep
2.449 4.2eh

2.449

P2,3(D) 220eh
3 15ep

4 3 0.6529 2.012 5.0ep
2.080 3.9eh

2.520

C2,3(D) 22.43106 ep
12 6.83104 eh

12 6 0.5528 4.109 5.1ep
2.289 3.9eh

2.289

P3,4(D) 270ep
4 56eh

5 4 0.6045 2.313 4.1ep
2.000 3.5eh

2.236

C3,4(D) 29.431010 ep
20 6.93108 eh

20 8 0.5419 5.388 4.2ep
2.115 3.4eh

2.115

aThe symbolsep andeh represent the maximum errors in the particle and the hole occupation numbers.
bThe symbols MW and H denote the McWeeny and the Holas purification formulas, respectively.
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Pn,n11~D !5D1~D2D̄ !(
j 51

n

a j~DD̄ ! j2an11~DD̄ !n11,

~39!

where the scalarsa jP@1,3,10,35,126,426, . . . # are the same
as those in Eq.~29!. Applying this formula toD̄, which is
equivalent to switchingD and D̄, produces a purification
formula which corrects the particle and the hole occupat
numbers through ordersn11 andn, respectively. Within the
McWeeny and the Holas purification formulas the parti
and the hole occupation numbers are treated equivale
because the factor of (D2D̄) changes sign when the partic
and the hole RDMs are exchanged. Removing the facto
(D2D̄) from the last term ofPn11,n11

H breaks the particle-
hole symmetry at the (n11)th order. While the resulting
purification formulas,Pn,n11(D) and Pn,n11(D̄), are less
accurate than the (n11)th Holas formula, they may often b
evaluated with fewer multiplications which can significan
enhance efficiency. Furthermore, we can compose th
complementary formulas to obtaincompositepurification
formulas which are correct to the (n213n12)th order in the
particle and the hole occupations,

Cn,n11~D !5I 2Pn,n11„I 2Pn,n11~D !…. ~40!

Selecting D or D̄ for the initial purification determines
whether the final result slightly favors the particle or the h
occupation numbers. Whenn50, we obtain the second
order DH formula from Eq.~40!, while replacingD with D̄
yields the HD formula.

The efficiency of these composite particle-hole formu
is compared with the McWeeny and the Holas formulas
06670
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Table I. Table I reports the accuracy of the particle and h
occupation numbers per iteration, the number of matrix m
tiplications per iteration, the location of the unstable fix
point, the derivative at this point as well as an effective er
xeff(e), that is, the error in the occupation numbers after o
iteration of an effective two-multiplication purification. Fo
the McWeeny and Holas formulas the unstable fixed po
occurs at 0.5, while it varies about 0.5 for the purificati
formulas with a nonsymmetric treatment of the particles a
holes. We compute the effective error for the composite f
mulas by

xeff~e!5bpeq, ~41!

where

b5a2a1
n111 ,

p5
q21

qm21
,

and

q5@~n111!~n211!#1/m.

The parametersa1 anda2 are the error coefficients~or pre-
factors! in the first and second formulas of the compos
purification, n111 andn211 are the lowest orders of th
errors in the two formulas, and the exponent 1/m is a ratio of
the number of multiplications~2! in one McWeeny purifica-
tion to the number of multiplications (2m) in one composite
purification. Comparisons of the effective errors show th
the efficiency peaks for then51 composite formula with an
effective error ofe2.449, while then52 composite formula is
also very accurate with an effective error ofe2.289. The com-
posite formulas, we note, are more cost effective than
1-6
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optimal Holas formulaP4,4
H (D) which has an error ofe2.236

and, furthermore, the derivatives at the unstable fixed po
of the composite formulas tend to be larger than the der
tives in the corresponding Holas formulas. The efficiency
the composite formulas peaks at lown because further im-
provement, as in the case of the higher-order Holas formu
is offset by the cost of increasing the number of matrix m
tiplications.

III. RESULTS AND DISCUSSION

To illustrate the purification formulas, we consider a fa
ily of sparse reduced HamiltoniansK with eigenvalues in the
interval @0,1#. Assume that the lowest occupied and the hig
est unoccupied states of our target 1-RDM appear inK at
m2g/2 and m1g/2, where the chemical potentialm50.5
and g is the band gap. Because the statesm2g/2 and m
1g/2 of the reduced HamiltonianK require the most purifi-
cation, the rate of the purification depends not upon the n
ber of states butonly upon the band gap gbetween the state
m2g/2 andm1g/2. The results for a giveng, therefore, are
representative of any Hamiltonian with that band gap a
chemical potential, and hence,the calculations given below
are valid not only for a specific reduced Hamiltonian but f
any reduced Hamiltonian with that band gap and chemi
potential. Without defining a specific reduced Hamiltonia
we are able to compute the number of matrix multiplicatio
required for each purification formula by applying the fo
mulas only to the ‘‘least idempotent’’ occupation numbe
m2g/2 andm1g/2, respectively, because these occupat
numbers require the most matrix multiplications to conver

Before purification we perform the following mapping
place the chemical potential at the unstable fixed pointg,

D̃5K1~g2m!I . ~42!

Wheng.0.5 as for the composite functions, the occupat
spectrum ofD̃ is no longer in the interval@0,1# but in the
interval @g20.5,11~g20.5!#; however, composite purifica
tion of the region between 1 and 11~g20.5! still converges
rapidly to unity. For three purification formulas, the tw
composite formulasC1,2(D) andC2,3(D) and the MW puri-
fication, Fig. 1 displays the number of sparse matrix mu
plications required to purify the occupation numbers to z
or one within 10210 as a function of six different band gap
g. Both composite formulas are consistently more effici
than the McWeeny purification; the formulaC1,2(D) de-
creases the total computational time from 17% to 25
These savings are consistent with the results obtained
Niklasson@18#.

Working with the 1-RDM rather than the wave functionC
in linear-scaling algorithms necessitates purification for c
straining the 1-RDM to beN representable. The two genre
for 1-RDM linear scaling, the gradient-based methods a
the Hamiltonian-purification methods, use purification
rather different roles. In the gradient-based methods an id
potent 1-RDM is chosen as an initial guess, and then upd
of the 1-RDM are computed from gradients of the energy~or
iterations of the 1,2-contracted Schro¨dinger equation@5#!.
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The updated 1-RDM is purified between iterations to corr
small deviations from idempotency. Daniels and Scuseria@3#
report'28 sparse matrix multiplications per self-consiste
field ~SCF! step with four of these multiplications emanatin
from the McWeeny purification applied twice. Using on
C2,3(D) composite purification might reduce the number
multiplications to 26 with a savings of 7%. This increase
efficiency is more modest than the savings in Fig. 1 beca
much of the computational effort is directed towards co
puting the gradient and the size of the step along the grad
rather than performing purification.

In the gradient-based method of Li, Nunes, and Daw@1#
the McWeeny purification formula has two distinct roles:~i!
to correct the 1-RDM for idempotency between iterations
discussed above and~ii ! within the energy expression t
compute the gradient update of the 1-RDM and an appro
ate stepsize along the gradient. An unpublished report@19#
indicates that favoring the hole purification by using the D
formula in the energy to compute the 1-RDM gradient m
be superior to treating the particles and holes equally w
the McWeeny purification. However, using even higher-ord
purification formulas may not improve upon McWeeny pu
fication in role~ii ! because, as Habershon and Manby ha
demonstrated with the Holas formulas@32#, replacing the
1-RDM in the energy expression with a high-order purific
tion formula permits 1-RDMs with a larger purification erro
to satisfy the energy expression. While the findings of Ha
ershon and Manby imply that more efficient, high-order fo
mulas may not be effective in role~ii !, they do not prohibit
using efficient Holas or composite purifications effectively
either role ~i! of the gradient-based methods or in th
Hamiltonian-purification methods.

The primary computational cost in the Hamiltonia
purification methods, in contrast with the gradient tec
niques, is purification. The eigenvalue range of any redu
Hamiltonian may be mapped onto the interval@0,1# by com-
puting the maximum and minimum eigenvalues with

FIG. 1. For three purification formulas, the two composite fo
mulasC1,2(D) andC2,3(D), and the McWeeny~MW! purification,
this figure displays the number of sparse matrix multiplications
quired to purify the occupation numbers to zero or one within 10210

as a function of six different band gapsg. Both composite formulas
are consistently more efficient than the McWeeny purification;
formula C1,2(D) decreases the total computational time from 17
to 25%.
1-7
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linear-scaling Lanczos method@10#. When the chemical po
tential is known, the efficiency of the generalized McWee
purification formulas in Fig. 1 translates directly into com
putational savings. In practice, however, the chemical po
tial must also be either explicitly or implicitly determine
during the purification procedure. This identification of t
chemical potential increases the computational cost of
procedure. In 1998 Palser and Manolopoulos develope
purification algorithm, based upon McWeeny’s formula
which performs the purification without explicit input of th
chemical potential@7#. Another approach to purifying with
out the chemical potential has recently been developed
Niklasson@18# with the formulasP0,1(D) and P0,1(D̄). Be-
cause these formulas treat the particle and the holes
equally, they may be applied in a variety of orderings
produce a range of fixed points~chemical potentials! in the
interval @0,1#. Selecting the ordering of the formulas durin
purification to converge the trace of the 1-RDM to the nu
ber N of electrons automatically and correctly places t
chemical potential~fixed point! between the occupatio
numbers for the occupied and the virtual orbitals.

Extension of Niklasson’s algorithm to the higher purific
tion formulas such asP1,2(D) and P1,2(D̄) requires some
care because compositions of these formulas only yield fi
points in the range@0.2324,0.7676#. An extended algorithm
therefore, must begin with using compositions of the low
order purification formulasP0,1(D) and P0,1(D̄) and then
transition to using the higher-order purification formul
P0,1(D) and P0,1(D̄). We propose the following extende
purification algorithm outlined in Table II. On input the a
gorithm accepts the numberN of electrons and the tria

TABLE II. Purification Algorithm M. This algorithm differs
from method N according to the boldfaced type which contr
whether the algorithm attempts a transition to the higher purifi

tion formulasP1,2(D) andP1,2(D̄).

function purify(N,D0)
while err,tol do
Hn5I 2Dn

if Tr( Dn).N then
Dn115Dn

2

if Tr (Dn11),N then
P1,25Dn1(Dn2Hn)DnHn23(DnHn)2

if Tr (P1,2),N then Dn115P1,2 end if
end if

else if Tr(Dn),N then
Dn115I 2Hn

2

if Tr (Dn11).N then
P1,25Dn1(Dn2Hn)DnHn13(DnHn)2

if Tr (P1,2),N then Dn115P1,2 end if
end if

end if
err5uuDn112Dnuu
end do
RETURN(Dn11)
end
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1-RDM D0 which is obtained by mapping the reduce
HamiltonianK with its eigenvalue range@emin ,emax# onto the
interval @0,1#,

D05
1

emax2emin
~K2eminI !, ~43!

whereI is the identity matrix. This algorithm differs from th
procedure proposed by Niklasson according to the boldfa
type which controls whether the algorithm attempts a tran
tion to the higher purification formulasP1,2(D) andP1,2(D̄).
A transition is attempted when the lowered-order purificat
formulas P0,1(D) and P0,1(D̄) are causing the trace of th
1-RDM to fluctuate aboutN. The new 1-RDM from the
higher-order formula is accepted if it continues the fluctu
tion aboutN.

Performing Hartree-Fock calculations on sodium wires
10, 20, 30, and 40 atoms, we compare the purification a
rithm ~M! with the methods of Palser and Manolopoul
~PM! @7# and Niklasson~N! @18# as well as an algorithm
from Niklasson, Tymczak, and Challacombe~NTC! @33#
which also extends Niklasson’s method to higher-order p
fication formulas. Electronically each sodium atom is rep
sented by one valence electron through a frozen-core H
Wadt basis set@34#. The linear Na wires are defined by
nearest-neighbor bond distance of 3.302 142 3 Å. Using
PC-GAMESSimplementation@35# of the GAMESS program for
electronic structure@36#, we computed the Fock matrice
from each iteration of a SCF calculation on the sodium wi
The Fock matrices were then purified with the PM, N, NT
and M algorithms. In Fig. 2 for each of the sodium wires t
number of matrix multiplications in a representative SC
cycle is reported as a function of the purification method
ogy. Both the M and the N algorithms employsix times fewer

s
-

FIG. 2. Performing Hartree-Fock calculations on sodium wi
of 10, 20, 30, and 40 atoms, we compare in this figure the pu
cation algorithm~M! with the methods of Palser and Manolopoul
~PM! @7# and Niklasson~N! @18# as well as an algorithm from
Niklasson, Tymczak, and Challacombe~NTC! @33#. The number of
matrix multiplications in a representative SCF cycle is reported a
function of the purification methodology. Both the M and the
algorithms employsix times fewermatrix multiples than the PM
method. While both the NTC and the M algorithms extend the
procedure, the M algorithm in this example is as much as 33% m
efficient than the NTC method.
1-8
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matrix multiples than the PM method. The PM method
known to have difficulty for systems with either a low or
high occupancy of the valence orbitals. In practice, diff
ence in computational efficiency between the McWeeny f
mula and the formulasPn,n11, which treat the particles an
holes asymmetrically, can be even more dramatic than sh
in Fig. 1 because the asymmetric formulas facilitate pur
cation at a suitable chemical potential for the numberN of
electrons in the molecular system.

While both the NTC and the M algorithms extend the
procedure, the M algorithm in this example is as much
33% more efficient than the NTC method. The M techniq
only evaluates a two-multiplication purification formu
when the low-order formulas cause the trace of the 1-RD
to fluctuate aboutN while the NTC method evaluates a two
multiplication formula at each iteration. The N and M pu
fication methods have the best computational scaling for
10-, 20-, 30-, and 40-atom Na wires. While the M meth
employs fewer iterations than the N method, they hav
similar number of matrix operations with the N method ha
ing one fewer multiplication than M at 10 atoms, and the
method having one fewer multiplication than N at 20 atom
Further differentiation between the present N and M
proaches will require additional molecular examples of va
ing sizes at high, low, and intermediate valance occupan
as well as scrutiny of computational details such as sp
matrix filling. Because the high-order composite purificati
formula C2,3(D) converges to an idempotent 1-RDM fast
than the lower-order composite purification formulaC1,2
when the chemical potential is known as in Fig. 1, it is e
pected that a variant of algorithm M should generally
faster than algorithm N.

IV. CONCLUSIONS

The particle-hole formalism@20–26# from reduced
density-matrix theory is applied to the exploration of tw
classes of generalized McWeeny purification formulas. T
first class, including the well-known McWeeny formul
treats the particles and the holes equivalently, while the s
ond class purifies the particles and the holes differently.
derive each of the generalized McWeeny purification form
las as a sum of the 1-RDM and a series expansion in pow
of DD̄ where the number of terms retained in the ser
determines the order of the error in the particle and the h
occupation numbers. For McWeeny’s formula and its fir
06670
-
r-

n
-

s
e

e

a
-

.
-
-
es
se

-

e

c-
e
-
rs
s
le
-

class extensions the series is weighted by a factor ofD

2D̄) which enforces the particle-hole equivalence. Beca
the series captures the symmetry of the particles and
holes, it provides an efficient algorithm for fast summati
of the formulas with a minimum of sparse matrix multipl
cations. The second class of generalized purification form
las has a similar particle-hole expansion in powers ofDD̄

except that the factor of (D2D̄) is removed from the final
term which breaks the particle-hole symmetry. Application
a particle-biased purification followed by a hole-biased pu
fication produces a composite purification.

The generalized purification formulas from both class
are readily compared with McWeeny’s purification throu
the calculation of an effective error in the occupation nu
bers, that is, the error from one iteration of an artificial tw
multiplication purification which is calibrated to reproduc
the error of the generalized formula after an equivalent nu
ber of matrix multiplications. Using the effective error a
well as a simple application, we show that two of the co
posite formulas are significantly more efficient than t
McWeeny purification. Further improvement is offset by t
cost of increasing the number of matrix multiplications. In
second application to sodium wires the higher-order pur
cation formulas are applied to the purification of one-parti
Hamiltonians where the chemical potential is not known. F
this illustration the proposed algorithm is six times mo
efficient than the purification method of Palser and Man
opoulos @7# and as much as 33% more efficient than t
related algorithm of Niklasson, Tymczak, and Challacom
@33#. The dramatic improvement over the method of Pal
and Manopoloulos@7# arises from the ability of the purifica
tion formulas Pn,n11, which treat the particles and hole
differently, to adjust easily to an unknown chemical pote
tial. The particle-hole approach to purification increases
understanding of linear-scaling methods and enhances
computational efficiency for the better quantum-mechan
treatment of large-scale chemical and biological systems
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