PHYSICAL REVIEW E 68, 066701 (2003

Towards idempotent reduced density matrices via particle-hole duality:
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Generalizations of McWeeny’s purification formula are developed within the formalism of the particle-hole
duality from the theory of reduced density matrices. Each of the generalized purification formulas is expressed
as a sum of the one-particle reduced density matt#eDM) and a finite series in the product of the one-
particle and the one-hole RDMs, a product which vanishes in the limit that the 1-RDM is idempotent. Two
categories of purification formulas are exploréd: formulas which treat the “occupied” and the “virtual”
occupation numbers equivalently atig formulas which treat these occupation numbers differently. The latter
category includes and extends the purification formulas derived in the context of the 1,2-contracted Schro
dinger equatioriD. A. Mazziotti, J. Chem. Physl15 8305(2001)]. While the McWeeny purification mini-
mizes the absolute error in the occupation numbers quadratically, the generalized purification formulas exhibit
faster than quadratic convergence of the 1-RDM towards idempotency. Application of these purification for-
mulas in existing algorithms for linear scaling will be explored and discussed including illustrative calculations
on sodium wires of length 10, 20, 30, and 40 atoms.
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I. INTRODUCTION may be designed to converge iteratively to an idempotent
1-RDM. McWeeny derived the most widely employed puri-
Computation of the electronic structure of large-scalefication formula[14].
molecules requires algorithms which scéieearly with the Recently, there has been interest in the following ques-
numberN of electrons. Linear-scaling algorithms have beention: can McWeeny’s formula be improved in terms of accu-
developed within the last decade for semiempirical, tight-racy and efficiency5,15-17%? Both Kryachkd15] and Ho-
binding, Hartree-Fock, and density-functional methods in@s[16] examined a generalization of McWeeny’s formula to
which the many-electron system is mapped onto a onehigher orders. Kryachko’s work overlooked the importance

electron model[1-11. Any one-electron reduced Hamil- of purify?ng the occupation numbers associated with. the vir-
tual orbitals. Holas corrected Kryachko’'s work to include

tonian, including a Fock or Kohn-Sham Hamiltonian, has theb h ‘od and virtual orbitals. but th vsis of eff
well-known property that the determinant of iké lowest oth occupied and virtual orbitals, but the analysis of effi-
ciency in comparison with repeated applications of

orbitals is the wave function for thH-particle system. The ) . .
effective one-electron Hamiltonian from Hartree-Fock OrMcWeenys formL_JIa was mcqnclqswe. we _a!so ext_e_nded
) . . - . . Kryachko’s work in another direction by deriving purifica-
_den5|_ty-funct|onal theory is traditionally dlqgonallzed at eaChtion formulas, where the occupied and the virtual orbitals are
iteration to p.roduce.a sgt of molecular orbltgls. However, th%orrected unequalljs]. Very recently, Niklassofi18] inde-
process of diagonalization scalesr dswherer is the rank of  handently derived and tested formulas from this second class
the one-electron basis set. The key to achieving a lineary¢ generalized McWeeny transformations. In this pade)
scaling algorithm for a one-electron model is to computey formalism, known as th@article-hole duality[20—26],
directly the one-particle reduced density matt&RDM) il be introduced from the field of reduced density matrices
without determining an orthogonal set Rforbitals. [23,27-3( to extend, synthesize, and evaluate efficiently the
The main difficulty with using the 1-RDM as the basic two classes of generalized purification formulas. Several for-
variable is that it must be constrained to correspond to amulas will be shown to exhibit faster convergence to idem-
N-particle Slater-determinant wave function. Such con-potency with the same number of matrix multiplications as
straints are known adl-representability conditions. Fortu- the repeated application of McWeeny’s formula.
nately, the ensembl&-representability condition for the A guantum system may be equivalently described in terms
1-RDM was derived by Colemdri2,13: the eigenvalues of of the probability of a particle being present or the probabil-
the 1-RDM, normalized tdN, must lie in the interval0,1]. ity of a particle being absent. The absence of a particle is
Any 1-RDM that derives from aiN-particle Slater determi- also called ahole The mathematical equivalence of these
nant has the more restrictive condition that its eigenvalueswo perspectives, which is akin to the equivalence of de-
must be zero or one, that is, the 1-RDM must be idempotenscribing a glass as half empty or half full, is known as the
The process of mapping an arbitrary 1-RDM onto an idem-article-hole duality Every N-particle system may be
potent 1-RDM is known agurification By employing only  equally well described by aN-particle wave function or an
matrix multiplications, linear-scaling purification formulas (r —N)-hole wave function, where is the rank of the one-
particle basis set. Just as integration of lparticle density
matrix over all but one-particle produces the one-particle
*Electronic address: damazz@uchicago.edu RDM, integration of the (— N)-hole density matrix over all
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but one hole produces the one-hole RDM. In the absence df-RDM: (i) gradient-based method41-5] and (ii)
particle interactions thé\-particle wave function is, as we purification-of-the-Hamiltonian method6—-8,10. An ex-
previously mentioned, a determinant of the lowsirbitals, ample of the gradient-based methods, which we recently
and the ¢ —N)-hole wave function is a Slater determinant of developed, is the iterative solution of the 1,2-contracted
the remaining {—N) orbitals. Furthermore, in the Schradinger equation(1,2-CSE with reconstruction of the
interaction-free case, the one-particle RDM and the one-hol2-RDM from the 1-RDM[5]. The 1,2-CSE suggests the fol-
RDM areN representable if they ar@) normalized toN and  lowing iterative “gradientlike” update for the 1-RDM,

(r—N), respectively(ii) Hermitian, and(iii) idempotent.

The present exploration of purification differs signifi- Dns1=Dp+A(DKDy+DoKD,), ()]
cantly from previous work, in that we explicitly examine the
effect of purification onboth the one-particle and the one- whereD,(=1—D) is the one-hole RDM antlis the identity

hole RDMs. The relationship between the 1-particle RDMmatrix. While the correction for the 1-RDM is accurate for
and the one-hole RDM places an important restriction on th@n idempotenD,,, the new trial 1-RDMD,,;.; may only be
structure of the purification formulas. We reveal the particle-approximately idempotent. Hence, before the next iteration,
hole structure of both McWeeny’s formula and the higher-the trial 1-RDM must be purified. Similar purification is nec-
order generalizations by expressing these formulas directigssary in other gradient-based algorithms.
in terms of the particle and the hole 1-RDMs. Finally, within  In the second category of methods a linear mapping of the
the framework of the particle-hole notation, purification for- one-electron reduced Hamiltonian,
mulas are derived which converge more efficiently than the _
McWeeny formula to idempotent RDMs. An extension of D=Nul=K)+q1, (4)
Niklasson’s trace-correcting algorithfid8] is proposed for
using these higher-order formulas to purify one-electrorproduces a 1- RDMD, that is, a Hermitian matrix with oc-
Hamiltonians to their idempotent ground-state 1-RDMs. Ap-cupation numbers between 0 and 1 whose appropriate puri-
plication of these purification formulas in existing algorithms fication can produce the idempotent ground-state 1-RDM for
for linear scaling will be explored and discussed includingthe N-electron system. The parametermay be computed
illustrative calculations on sodium wires of length 10, 20, 30,from a knowledge of the maximum and minimum eigenval-
and 40 atoms. ues ofK, the chemical potentigk, and a parametey from
the purification formulg3]. The technique works because
Il. THEORY the reduced Hamiltonian and the idempotent 1-RDM share
the same eigenfunctions. Only the occupation numbet§ of
After sketching the salient features of linear scaling withmust be corrected through a mapping followed by purifica-
the 1-RDM, we develop in Sec. Il B purification formulas tion. The need for efficient purification in this approach is of

from the perspective of the particle-hole duality. paramount importance. McWeeny'’s formula is the most com-
monly used purificatiof14], and in the following section we
A. Linear-scaling overview explore purification from the perspective of the particle-hole
duality.

Many useful methods in electronic structure, from the
Hartree-Fock method to practical density-functional theory,
approximately map the many-electron problem onto one
electron. For linear scaling the 1-RDM rather thBnor- The one-particle and one-hole RDMs satisfy the simple
thogonal orbitals must be computed at each self-consistetiglationship
iteration. Optimization of the energy for ti¢-electron sys- _
tem may be expressed as D+D=lI, 5)

B. Particle-hole purification

E=minTr(KD), (1)  wherel is the identity matrix of rank, the total number of
orbitals. This relationship is valid for one-particle and one-
where K is the one-electron reduced Hamiltonian and thehole RDMs derived fromany wave function. If they derive
1-RDM D is subject to the followindN-representability con- from a determinant wave function, then they must also sat-
straints: (i) the trace of the 1-RDMD equalsN, (ii) the isfy the relation
1-RDM D is Hermitian, and(iii) the 1-RDMD is idempo- _
tent, that is, DD=0. (6)

D-D2=0. (2)  Satisfaction of Eqe5) and(6) is necessary and sufficient for
the one-particle and one-hole RDMs to arise from the inte-
Mathematically, we have a constrained optimization problen@ration of anN-particle density matrix assembled from a
to be solved. single Slater determinant. Substitution®f= 1 —D from Eq.
Practical realization of linear scaling with the 1-RDM (5) into Eq. (6) yields the more familiar idempotency condi-
occurred when iterative approaches were developed for ation in Eq.(2). The condition in Eq(6) expresses succinctly
efficient solution to the constrained minimization problem.a fundamental property of a noninteracting system, which is
Two broad genres exist for the direct determination of thethat the subspace spanned by the occupied orbitdlsrofist
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be orthogonal to the subspace spanned by the “occupiedThe formulas are readily interconverted by switching the
orbitals of D. If the hole and the particle RDMs are both roles of D andD and employing the relationship betweBn

idempotent, then it follows from Ed5) that the unoccupied and D in Eq. (5). Under the DH formula the errors in the
orbitals ofD are the occupied orbitals & and the occupied particle and the hole occupation numbers are reduced by the

orbitals ofD are the unoccupied orbitals Bf. In many parts ~ following mappings:

of the paper we will refer to the occupied orbitals and occu- > 4

pation numbers ob as theparticle orbitals and particle oc- €n— 2€n €p (13
cupation numbers and to the unoccupied orbitals and occu-

pation numbers ob as thehole orbitals and hole occupation "

numbers.

The challenge of purifying a 1-RDM to b represent-
able with a Slater determinant preimage lies in correctin
both the particle and the hole occupation numbers. For
given 1-RDM let us denote the maximum error in a particle
occupation number by, and similarly, the maximum error
in a hole occupation number kyy, . Kryachko[15] proposed
the following “high-order” iterative purification formulas:

ep—>4e§—4eg+ eg. (14

ﬂmportantly, the errors in both the particle and the hole oc-
cupations are reduced to second order. However, because we
applied the hole purification first, the coefficients of the qua-
dratic error(2 for € versus 4 fore}) favor the hole purifi-
cation. Similarly, the error reductions for the HD formula,
obtained by exchanging, and €, in Egs. (13) and (14),
BN favor the particle purification.
Pon-1(B)=D% @ Averaging the DH and the HD purification formulas

wheren=2. The subscripts oR,,,_;(D) indicate the orders yields the well-known McWeenyMW) purification

through which the errors in the occupation numbers of the

occupied and unoccupied orbitalsDf respectively, vanish. P'}’!\{VIE(PEEJF P2y (15
The 1-RDM uponinput and outputis in its one-hole form.

The simplicity of this formula, in comparison with Kryach-
ko's polynomials inD [15], highlights one advantage of us-
ing both particle and hole notations. One iteration of this
formula reduces the error in the particle occupation number
from €, to eg; however, as also noted by Hola$6], the
error in the hole occupation numbers does not improve, th

=3D?-2D3, (16)

where the error in either the particle, or the hole, ey,
8ccupation numbers, which we denote by a generids
iven by the average of the errors from the HD and the DH

rmulas
is, e, becomes (% €,)" which is still O(e,). ReplacingD
with D in Eq. (7) yields the formula e—3€’—2¢€°. (17
Pon-1(D)=D", (8)  While the HD and the DH formulas are fourth-order polyno-

i . .. mials inD (or 5), they may be evaluated itwo matrix
wheren=2. With the input and the output 1-RDM in its 1 jiplications such as the third-order polynomial McWeeny

particle form, it is the hole occupation numbers that are im'purification [5]. From the traditional expression of the

proved while the particle occupation numbers remain incorMcWeeny formula in Eq(16) it is difficult to see immedi-

rect toO(ep). . ately that the errors in the particle and the hole occupation
In the context of our research on the 1,2-contracted Schrq,mpers are treated with equivalent purification.

dinger equatioh5] we proposed two new purification formu- 1o particle-hole symmetrpf the McWeeny purification
las: (1) the HD formula in which first the particle occupation may be made more manifest by writing the purification as
numbers and then the hole occupation numbers are purifiegl common correction to the one-particle and the one-hole
through a nesting of Eq¢7) and(8) with n=2 and(2) the  rpMs and (i) expressing the MW formula with both the
DH formula in which the order for applying particle and hole one-particle and the one-hole RDMs. McWeeny's purifica-
purification is reversed. Mathematically, the HD and the DHiion for the one-particle and the one-hole RDMs may be

fqtr_mulas for the one-particle RDM are given by the compo-¢onstructed untraditionally through taedition of correction
sitions

terms
PY(D) =Py —[P14D)]) 9) PYW(D)=D+A(D) (18)
=(1-D?)?2 (100 and
and PYY(D)=D+A(D). (19)
P2H(D)=1—-Py (1 —[P14D)]) (11)  For the particles and holes to be purified equivalently, the
corrected particle and hole RDMs must satisfy Es), that
=1—(1—D?)72. (12) s,
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PQA\{"(E)+P’}"\1N(D)=I. (20) order errors in both the particle and the hole occupation
‘ ‘ numbers of the McWeeny-purified 1-RDM artid) A must
change signs upon exchange of the one-particle and the one-
hole RDMs. From the first condition it follows that the cor-
A(D)= —K(S), (21) Ection mustfactorizeinto two factors ofD, two factors of
D, and a first-order polynomial term. By the second condi-
and, hence, we only need to determihgD). We now dem- tion this final factor must be a scalar multiple of the differ-
onstrate that two conditions, satisfied by the McWeeny forence between the one-particle and the one-hole RDMs.

BecauseD andD also satisfy Eq(5), it follows that

mula, completely determine the functional forms&fD): Hence, the correction has the form
(i) the correction must remove the first-order errors in both _
the particle and the hole occupation numbers &ndfrom A(D)=a,(D—D)D?D?, (27)

Eq. (22) the correction must change signs upon exchange of )
the one-particle and the one-hole RDMs. From the first conwhere the constant,, which must be chosen to cancel the

dition it follows that the correction must have one factobof sr(]acond—rc])rder errors in theI‘ Mcweeny purific?]tion, equals
and one factor oD, that is, three. The second-order Holas correction may thus be written

as

A=aDD®(D,D), (22) PY,(D)=PY¥(D)+3(D-D)D?D?. (28)

where a is a scalar and the remainddr(D,D) is a first- |, yaneral thenth-order purification formulas of Holas may
order polynomial inD and D. Condition (i) can only be pe cast in the particle-hole notation as the 1-RPMs the
satisfied If(D(D,D) is a scalar multlple of the difference product of @—5) and a power series |BS,

between the one-particle and the one-hole RDMs, that is,

®(D,D)=xD—D. Substituting this expression into EQ2), _ .
Wé ﬁnd)oc ’ P *2 ;32,1=D+(D—D)JZl a;(DD)/, (29

n

A=aDD(D-D). (239 where each of the scalaws; <[1,3,10,35,126,426 . .] is

Th tantr. ch ¢ | the first-ord ficl dequal to the negative of the error coefficient feg in
€ constant, chosen o cancel e first-order particie andpn (note that the error coefficients are negaftiviex-

hole errors in the RDM, is unity. Therefore, we have a new i-1i~1

particle-hole expression for McWeeny’s purification changing the particl® and the holdD matrices immediately
shows that all orders of the formulas treat the particles and
PY¥(D)=D+DD(D-D). (24)  the holes equivalently.

Because the particle-hole notation represents the factor-
Unlike the standard expression this formulation of the Mwization of the purification formula into particle and hole com-
purification directly highlights the particle-hole symmetry ponents, it facilitates the design of fast multiplication
since exchanging the particle and the hole RDMs gives ~ schemes. For example, this second-order correction may be
L evaluated in three matrix multiplications:
MW
P12(D)=b-bBO-D). 29 PYAD)=P}'Y(D)+3YX (30)
where the correction is the same as for the particle matrix
except for the sign change. where
Building upon the work of Kryachko, Holas derived a —
higher-order polynomial generalization of McWeeny’s for- X=DD, (3D
mula which corrects the errors in both the particles and the _
holes through orden. Like the McWeeny formula the Holas Y=(D-D)X, (32
hierarchy of purification formula treats the particles and the
holes equivalently. While Holas employed the properties of PYY(D)=D+Y. (33
the B function to generate polynomials i [16], the formu- ) .
las may be intuitively derived within the framework of the At most three matrices need to be stored simultaneoisly:

particle and the hole matrices. The first-order Holas formula$ andY. Similarly, the generahth-order formulas may be

is equivalent to McWeeny's purification formula. As in our evaluated efficiently by summing the power serie®iD in
derivation of the McWeeny formula, we derive the second-n matrix operations and then multiplying the summed series
order Holas formula as a correction to the first-order exprespy the matrix D_E) for a total of (W+1) matrix opera-
sion, that is, tions. For anyn only four matrices need to be stored simul-
taneouslyD, DD, the highest power dDD computed at a
given time in the program, and the accumulated sum of the

The second-order correctiah is completely determined by Series inDD. A higher power inDD may be constructed in
two necessary conditiongi) A must remove the second- memory row by row, while the next-to-highest powerdb

PY4D)=PYV(D)+A(D). (26)
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is eliminated from memory row by row. Fer=4 the com-  ber of multiplications in one generalized purification. The
putational cost may be further reduced by partitioning theparametersp and q were determined symbolically with

power series iDD into separate even and odd series. WherMAPLE 8 [31] so that applying the functiog 2m times to an

nis even, for example, we have initial error € generates the same final error as applying the
nth-order formulatwice to an initial errore. Whenn=1,
__ (D2 _ m=2, anda=3, we recover the error in one iteration of the
Ph,=D+(D— D)[ > a,(DD)? McWeeny formula, that is, &. Using the effective error, we
=1 compare in the first four rows of Table | the efficiency of the
ni2 o generalized Holas purification formulas with the well-known
+D52 azjl(DD)zJ"Z], (39 McWeeny purification. Only the even-order formulas are
=1 presented because they are more efficient than their odd-

. . . ordered brethren. We observe that some of the higher-order
which may be evaluated in a grand total of2+1) matrix formulas converge towards an idempotent 1-RD&ster

operations. With this partitioning of the power series for any, - e McWeeny formula with the efficiency peaking at the

n a maximum of six matrices need to be stored at the samg, 1 order purification which mimics an effective first-

time: D, DD, (DD)?, the highest power offD)? computed  order formula with arD(€22%9 error for every two multipli-

at a given time in the program, the accumulated sum of theations. Also given in Table I for each formula is the location

even series irDD, and the accumulated sum of the odd of the unstable fixed poinin occupation spectrunj0,1]

series inDD. Evaluation of odd orders of purification is Which determines the boundary after purification between the

slightly less efficient atrf+1)/2+ 1 matrix operations for an Particle and the hole occupation numbers. The magnitude of

odd order ofn. the derivative at this fixed point provides a measure for the
Although the Holas formulas correct the errors in the partate of purification in its vicinity.

ticle and the hole occupation numbers through a higher order The Holas formulas offer one generalization of

than the McWeeny formula, they require additional matrixMcWeeny’s purification, while the DH and the HD formulas

multiplications. The first-order McWeeny formula as well asoffer a different generalization in which the particle and the

the first-order DH and HD formulas require ortlyo sparse hole corrections are treated unequally. Let us recast the pu-

matrix multiplications each, but the second-order generalizeéification Po,_; in Eq. (8) with n=2 as a correction to the

McWeeny formula requireshree matrix multiplications. ~one-particle RDM,

How does the efficiency of these higher-order formulas com-

pare with the first-order purifications? To answer this ques-

tion, one needs to know the order of error correction requireq-wo properties of Eq(8) determine the correction within a

fqr a tWO'mUIt'p“CE.it'pn punﬂca_tl_on to pe as accurate as ag. o factorii) the correction is a second-order polynomial
higher-ordemmultiplication purification if both purification

algorithms are permitted to use the same total number dgf D @ndD and(ii) the corrections must vanish in the limit
matrix multiplications. For amth-order formula we define thatD andD are idempotent. For the second criterion to be
the error of an artificial two-multiplication purification true with the quadratic constraint the correction must be pro-
whose D-times repeated application would generate the erportional toDD. Specifically, we find that

ror of thenth-order formula applietivice. Theeffectiveerror

Poi(D)=D+A(D). (36)

xerf(€) in the occupation orbitals after one iteration of the Po(D)=D—-DD. (37)
“artificial” two-multiplication purification may be computed
with the formula Similarly, the purificationPg, in Eq. (7), which involves
squaring the hole matrix, follows from exchanging the par-
Xeii( €)= BPeY, (350 ticle and the hole matrices,
where Po1D)=D—-DD. (38)
B=a""?, Unlike the McWeeny formulas for correcting the one-particle
and the one-hole RDMs in Eq&4) and(25), the corrections
g-1 in the purification formulas in Eq€37) and (38) share the
P=— 1’ same sign Consequently, the purified particle and hole
q RDMs deviate from their relation in E¢5) by the amount
and —2DD. As shown earlier in Eqg9) and(11) the composi-
tion of these simple, RDM-squaring purification formulas
q=(n+1)2m produces the HD and the DH formulas which are correct
through first order in both the particles and the holes.
The symbolea is the error coefficientor prefactoy of the The general formula for purification of the particles and

nth-order purificationn+1 is the lowest order of the error the holes through ordens andn+1, respectively, may be
in the formula, and the exponeni2is a ratio of the number readily expressed in particle-hole notation as a perturbation
of multiplications in one McWeeny purification to the num- of the Holas formulas in Eq29),
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TABLE I. For generalized McWeeny purification formulas this table reports the accuracy of the particle and hole occupation numbers per
iteration, the number of matrix multiplications per iteration, the location of the unstable fixed point, the derivative at this point, as well as
an effective errory.s(€), that is, the error in the occupation numbers after one iteration of an effective two-multiplication purification.
Comparing they(€), we perceive that several formulas, especiélly,(D) andC, D), are significantly more efficient than the tradi-
tional McWeeny purification.

Occupation errofs Unstable fixed point Effective erromg.(e€)
Purification formula% Particles Holes Matrix multiples Location Derivative Particles Holes

PYY(D) ~3e; 3e? 2 0.5000 1.500 3e; 3¢
PYAD) —10e; 10e 3 0.5000 1.875 3.56,9%  3.5¢5%%
P4 D) —126e, 126¢; 4 0.5000 2.461 4557 4.5¢22%
PE«(D) —1716¢] 1716¢) 5 0.5000 2.933 4361 4365170
Po1(D) —2¢, €l 1 N/A N/A 4e, €
Co(D) —4e 22 2 0.6180 1.528 4e; 22
P, D) —6e; 4¢} 2 0.7676 1.643 6e; 4¢}
C,4D) —864e; 96€l 4 0.5722 2.825 5.6, 4.2¢%449
P, D) —20ed 15¢; 3 0.6529 2.012 5.0¢; %% 3.9¢2520
C,4D) —24x10° 5% 6.8X10° € 6 0.5528 4.109 5.1€5°%° 3.9¢2%%9
P34D) —70e; 56e;, 4 0.6045 2.313 4.1€5°% 3.5¢22%
C34D) —9.4x10° €’ 6.9x10° € 8 0.5419 5.388 4.2¢5™° 3.4¢211°

#The symbolse, and e, represent the maximum errors in the particle and the hole occupation numbers.
®The symbols MW and H denote the McWeeny and the Holas purification formulas, respectively.

o o o Table I. Table | reports the accuracy of the particle and hole
Pons1(D)=D+(D-D)>, aj(DD)! = e, 1(DD)" L, occupation numbers per iteration, the number of matrix mul-
=1 tiplications per iteration, the location of the unstable fixed
(39) point, the derivative at this point as well as an effective error
Xxefi(€), that is, the error in the occupation numbers after one
where the scalara; €[1,3,10,35,126,426 . . ] are the same jieration of an effective two-multiplication purification. For
as those in Eq(29). Applying this formula toD, which is  the McWeeny and Holas formulas the unstable fixed point
equivalent to switchingd and D, produces a purification Occurs at 0.5, while it varies about 0.5 for the purification
formula which corrects the particle and the hole occupatioformulas with a nonsymmetric treatment of the particles and
numbers through orders+ 1 andn, respectively. Within the ~holes. We compute the effective error for the composite for-
McWeeny and the Holas purification formulas the particleMulas by
and the hole occupation numbers are treated equivalently Yeit( €)= BPe9, (42)

because the factor ofX— D) changes sign when the particle

and the hole RDMs are exchanged. Removing the factor of/here

(D—D) from the last term oPﬁH’n+l breaks the particle- ,8=a2a21+1,
hole symmetry at then(+1)th order. While the resulting

purification formulas,P, 4,(D) and Pn,nﬂ(ﬁ), are less g—1
accurate than then(+ 1)th Holas formula, they may often be P= qm-1’

evaluated with fewer multiplications which can significantly
enhance efficiency. Furthermore, we can compose thesand
complementary formulas to obtaioomposite purification

_ 1/
formulas which are correct to the{+3n+ 2)th order in the q=[(ny+1)(n+1)J*™".

particle and the hole occupations, The parameters;, and a, are the error coefficient®r pre-
_ factorg in the first and second formulas of the composite
Con+2(D)=1=Pnni1(1 =Py nia(D)). (40) purification,n;+1 andn,+1 are the lowest orders of the

_ errors in the two formulas, and the exponemhis$ a ratio of
SelectingD or D for the initial purification determines the number of multiplication§2) in one McWeeny purifica-
whether the final result slightly favors the particle or the holetion to the number of multiplications (&) in one composite
occupation numbers. When=0, we obtain the second- pyrification. Comparisons of the effective errors show that
order DH formula from Eq(40), while replacingD with D the efficiency peaks for the=1 composite formula with an
yields the HD formula. effective error ofe?44° while then=2 composite formula is
The efficiency of these composite particle-hole formulasalso very accurate with an effective errore3f?®% The com-
is compared with the McWeeny and the Holas formulas inposite formulas, we note, are more cost effective than the
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optimal Holas formulaP}} (D) which has an error 0&%2% 80
and, furthermore, the derivatives at the unstable fixed points 70| | [Jcr2am B criom | Mw | |
of the composite formulas tend to be larger than the deriva- 3 gp £ =
tives in the corresponding Holas formulas. The efficiency of © E
the composite formulas peaks at lowbecause further im- -S 0 = §
provement, as in the case of the higher-order Holas formulas, § 40t = =
is offset by the cost of increasing the number of matrix mul- =30} | = =
tiplications. ﬁ; 20E _ = = =
=10 b B I§ = | E
Ill. RESULTS AND DISCUSSION 0 = E = E g E
To illustrate the purification formulas, we consider a fam- =06 =03 =01 =001 =0.0001=0.000001
ily of sparse reduced Hamiltonialswith eigenvalues in the Band Gap

interval[0,1]. Assume that the lowest occupied and the high-
est unoccupied states of our target 1-RDM appeaK iat
m—g/2 and u+g/2, where the chemical potentiagl=0.5

FIG. 1. For three purification formulas, the two composite for-
mulasC; (D) andC, (D), and the McWeenyMW) purification,

- this figure displays the number of sparse matrix multiplications re-
and g is the band gap. Because the stafesg/2 and u quired to purify the occupation numbers to zero or one within’f0

+ g_/2 of the reduced Ham?ltor}iaK require the most purifi- as a function of six different band gagsBoth composite formulas
cation, the rate of the purification depends not upon the NuMg.e consistently more efficient than the McWeeny purification; the

ber of states bubnly upon the band gap lgetween the states  formula C, (D) decreases the total computational time from 17%
pn—g/2 andp+g/2. The results for a giveg, therefore, are g 259,

representative of any Hamiltonian with that band gap and

chemical potential, and hencthe calculations given below The updated 1-RDM is purified between iterations to correct
are valid not only for a specific reduced Hamiltonian but for small deviations from idempotency. Daniels and Scud&iia
any reduced Hamiltonian with that band gap and chemicalieport~28 sparse matrix multiplications per self-consistent-
potential Without defining a specific reduced Hamiltonian, fie|d (SCP step with four of these multiplications emanating
we are able to compute the number of matrix multiplicationsgrom the McWeeny purification applied twice. Using one
required for each purification formula by appllying the for- C, D) composite purification might reduce the number of
mulas only to the “least idempotent” occupation numbers, mytiplications to 26 with a savings of 7%. This increase in
w#—9/2 andu+9/2, respectively, because these occupationefficiency is more modest than the savings in Fig. 1 because
numbers require the most matrix multiplications to convergemuch of the computational effort is directed towards com-
Before purification we perform the following mapping to pyting the gradient and the size of the step along the gradient
place the chemical potential at the unstable fixed pgint rather than performing purification.
- In the gradient-based method of Li, Nunes, and Day
D=K+(y=u)l. (42)  the McWeeny purification formula has two distinct rolés:
) ) ~ to correct the 1-RDM for idempotency between iterations as
When y>0.5~as for the composite functions, the occupationgiscussed above andi) within the energy expression to
spectrum ofD is no longer in the interval0,1] but in the  compute the gradient update of the 1-RDM and an appropri-
interval [ y—0.5,1+(y—0.5]; however, composite purifica- ate stepsize along the gradient. An unpublished refd®t
tion of the region between 1 and+-1y—0.5) still converges indicates that favoring the hole purification by using the DH
rapidly to unity. For three purification formulas, the two formula in the energy to compute the 1-RDM gradient may
composite formula€; (D) andC, y(D) and the MW puri-  be superior to treating the particles and holes equally with
fication, Fig. 1 displays the number of sparse matrix multi-the McWeeny purification. However, using even higher-order
plications required to purify the occupation numbers to zergurification formulas may not improve upon McWeeny puri-
or one within 101° as a function of six different band gaps fication in role(ii) because, as Habershon and Manby have
g. Both composite formulas are consistently more efficientdemonstrated with the Holas formul&32], replacing the
than the McWeeny purification; the formul@; D) de- 1-RDM in the energy expression with a high-order purifica-
creases the total computational time from 17% to 25%tion formula permits 1-RDMs with a larger purification error
These savings are consistent with the results obtained by satisfy the energy expression. While the findings of Hab-
Niklasson[18]. ershon and Manby imply that more efficient, high-order for-
Working with the 1-RDM rather than the wave functiéh ~ mulas may not be effective in rol@), they do not prohibit
in linear-scaling algorithms necessitates purification for conusing efficient Holas or composite purifications effectively in
straining the 1-RDM to bé\ representable. The two genres either role (i) of the gradient-based methods or in the
for 1-RDM linear scaling, the gradient-based methods andHamiltonian-purification methods.
the Hamiltonian-purification methods, use purification in  The primary computational cost in the Hamiltonian-
rather different roles. In the gradient-based methods an idenpurification methods, in contrast with the gradient tech-
potent 1-RDM is chosen as an initial guess, and then updatesques, is purification. The eigenvalue range of any reduced
of the 1-RDM are computed from gradients of the endigy  Hamiltonian may be mapped onto the inter{@/1] by com-
iterations of the 1,2-contracted SchHioger equation5]).  puting the maximum and minimum eigenvalues with a
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2

TABLE 1l. Purification Algorithm M. This algorithm differs
from method N according to the boldfaced type which controls
whether the algorithm attempts a transition to the higher purifica-

5

||:|PM @ Nntc WN EM|

—_

[\

(=]
T

|

tion formulasP, o(D) and Pl,z(a).

function purify(N,D)
while err<tol do
H,=1-D,
if Tr(D,)>N then
Dn+1:Dﬁ
if Tr(Dpy1)<N then
Pl,2:Dn+(Dn7Hn)Danfs(Dan)2
if Tr (P, ) <NthenD,,,;=P;, endif
end if
else if Tr(D,,) <N then
Dpy1=I-H3
if Tr(Dpy1)>N then
'3‘1,2:Dn+(Dn7Hn)Dan+3(Dan)2
if Tr (P ) <N then D, ;=P;,endif
end if
end if
err=|[Dy.1— Dyl
end do
RETURND,.1)
end

S

3

Multiplication Count
& 8

o]
(=2
T

e [l | [Tm= | [

=10 =20 =30 =40
Number of Atoms in the Na Wire

=
[
|

FIG. 2. Performing Hartree-Fock calculations on sodium wires
of 10, 20, 30, and 40 atoms, we compare in this figure the purifi-
cation algorithm(M) with the methods of Palser and Manolopoulos
(PM) [7] and Niklasson(N) [18] as well as an algorithm from
Niklasson, Tymczak, and Challacom@TC) [33]. The number of
matrix multiplications in a representative SCF cycle is reported as a
function of the purification methodology. Both the M and the N
algorithms employsix times fewematrix multiples than the PM
method. While both the NTC and the M algorithms extend the N
procedure, the M algorithm in this example is as much as 33% more
efficient than the NTC method.

1-RDM D, which is obtained by mapping the reduced

HamiltonianK with its eigenvalue ranglee ,in ,€max] 0Nt the

. ) . interval [ 0,1],
linear-scaling Lanczos methdd0]. When the chemical po-

tential is known, the efficiency of the generalized McWeeny
purification formulas in Fig. 1 translates directly into com- Do=_—_— (K= éminl), (43
putational savings. In practice, however, the chemical poten- max. =min

gal _muskt] also _?e e_|ther engC'tly gL.'mPJ'C'“)f/. de_term|fr1er(]1| wherel is the identity matrix. This algorithm differs from the
uring the purification procedure. This identification of the o -0y e proposed by Niklasson according to the boldfaced
chemical potential increases the computational cost of thg/p’3 which controls whether the algorithm attempts a transi-
procedure. In 1998 Palser and Manolopoulos developed _ e =
purification algorithm, based upon McWeeny’s formulas, 0N t the higher purification formula8, (D) andP, AD).
which performs the purification without explicit input of the A transition is attempted Wﬂen the lowered-order purification
chemical potential7]. Another approach to purifying with- formulasPq (D) and P, 4(D) are causing the trace of the
out the chemical potential has recently been developed b}-RDM to fluctuate aboutN. The new 1-RDM from the

Niklasson[18] with the formulasP, (D) and P, 1(5)_ Be- higher-order formula is accepted if it continues the fluctua-

cause these formulas treat the particle and the holes uffon aboutN. . . .
equally, they may be applied in a variety of orderings to Performing Hartree-Fock calculations on sodium wires of

produce a range of fixed pointshemical potentiajsin the 1_0’ 20, 30, a_md 40 atoms, we compare the purification algo-
interval[ 0,1]. Selecting the ordering of the formulas during rithm (M) with the methods of Palser and Manolopoulos

purification to converge the trace of the 1-RDM to the num-(PM) [7] and Niklasson(N) [18] as well as an algorithm

ber N of electrons automatically and correctly places thelfom Niklasson, Tymczak, and ChallacomTC) [33]

chemical potential(fixed poin) between the occupation vyhic_h also extends Niklasgon’s method to higher—or_der puri-
numbers for the occupied and the virtual orbitals fication formulas. Electronically each sodium atom is repre-

Extension of Niklasson's algorithm to the higher purifica- sented by_ one valence e_Iectron thro_ugh a froze_n-core Hay-
g g P Wadt basis sef34]. The linear Na wires are defined by a

tion formulas such a®, (D) and P, /D) requires some earest-neighbor bond distance of 3.302 142 3 A. Using the

care because compositions of these formulas only yield fixe - .
L ) C-GAMESSimplementatior{ 35] of the GAMESS program for
points in the rang¢0.2324,0.7676 An extended algorithm, electronic structurd36], we computed the Fock matrices

therefore, must begin with using compositions of the lowero each jteration of a SCF calculation on the sodium wire.
order purification formulas, (D) and Py 4(D) and then  The Fock matrices were then purified with the PM, N, NTC,
transition to using the higher-order purification formulasand M algorithms. In Fig. 2 for each of the sodium wires the
Po1(D) and Pg4(D). We propose the following extended number of matrix multiplications in a representative SCF
purification algorithm outlined in Table Il. On input the al- cycle is reported as a function of the purification methodol-
gorithm accepts the numbeéd of electrons and the trial ogy. Both the M and the N algorithms emplsix times fewer
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matrix multiples than the PM method. The PM method isclass extensions the series is weighted by a factorDof (

known to have difficulty for systems with either a low or a —p) which enforces the particle-hole equivalence. Because
high occupancy of the valence orbitals. In practice, differ-the series captures the symmetry of the particles and the
ence in computational efficiency between the McWeeny foroles, it provides an efficient algorithm for fast summation
mula and the formula®, .1, which treat the particles and of the formulas with a minimum of sparse matrix multipli-
holes asymmetrically, can be even more dramatic than showghtions. The second class of generalized purification formu-
in Fig. 1 because the asymmetric formulas facilitate purifi—Ias has a similar particle-hole expansion in powerD@

cation at a suitable chemical potential for the numieof — . .
electrons in the molecular system. except that the factor of{—D) is removed from the final

While both the NTC and the M algorithms extend the N term which breaks the particle-hole symmetry. Application of

procedure, the M algorithm in this example is as much a% pqrticle-biased purification' followgd b_y a hole-biased puri-
33% more efficient than the NTC method. The M techniqueICatlon produces a CO”_‘POS'FG purification.

only evaluates a two-multiplication purification formula _ 'he generalized purification formulas from both classes
when the low-order formulas cause the trace of the 1-RDM€ readily _compared W|th.McWeen_ys pur|f|cat|on. through
to fluctuate aboulN while the NTC method evaluates a two- the calcula_ltlon of an effective error in the occupe_1§|qn num-
multiplication formula at each iteration. The N and M puri- bers, that is, the error from one iteration of an artificial two-

fication methods have the best computational scaling for th ultiplication purificatiqn which is calibrated to_reproduce
10-. 20-. 30-. and 40-atom Na wires. While the M methodtn€ error of the generalized formula after an equivalent num-

employs fewer iterations than the N method, they have per of mat_rix muItipIi_catipns. Using the effective error as
similar number of matrix operations with the N method hav-WeII as a simple application, we show that two of the com-

ing one fewer multiplication than M at 10 atoms, and the Mposite formulag are significantly more effipient than the
method having one fewer multiplication than N at 20 atomsMcWWeeny purification. Further improvement is offset by the

Further differentiation between the present N and M ap_cost of increasing the number of matrix multiplications. In a

proaches will require additional molecular examples of vary-s’ec_Ond application to sc_)d|um wires t_h_e h_|gher-order pu_r|f|-
ing sizes at high, low, and intermediate valance occupancie(éat'o.n for_mulas are applied to_the purlflcgtlc_)n of one-particle
as well as scrutiny of computational details such as spars gm}ltoman_s where the chemical p".‘e”"a?' IS .not.known. For
matrix filling. Because the high-order composite purificationtiS illustration the proposed algorithm is six times more

formula C, D) converges to an idempotent 1-RDM faster efficient than the purification method of Palser and Manol-
than the lower-order composite purification formuly » opoulos[7] a_nd as ml_JCh as 33% more efficient than the
when the chemical potential is known as in Fig. 1, it is ex_related algorithm of Niklasson, Tymczak, and Challacombe

pected that a variant of algorithm M should generally be[33]' The dramatic imp_rovement over th_e method Of. Palser
faster than algorithm N. a_md Manopoloulo$7] arises from the ablllty_of the purifica-
tion formulas P, ., which treat the particles and holes

differently, to adjust easily to an unknown chemical poten-
tial. The particle-hole approach to purification increases our

The particle-hole formalism[20-26 from reduced understanding of linear-scaling methods and enhances their
density-matrix theory is applied to the exploration of two computational efficiency for the better quantum-mechanical
classes of generalized McWeeny purification formulas. Thdreatment of large-scale chemical and biological systems.
first class, including the well-known McWeeny formula,
treats the particles and the holes equivalently, while the sec-
ond class purifies the particles and the holes differently. We
derive each of the generalized McWeeny purification formu- Th author expresses his appreciation to Professor
las as a sum of the 1-RDM and a series expansion in powelgerschel A. Rabitz, Professor Dudley R. Herschbach, and
of DD where the number of terms retained in the seriedr. Alexander R. Mazziotti for their support and encourage-
determines the order of the error in the particle and the holenent. The NSF and the Dreyfus Foundation are gratefully
occupation numbers. For McWeeny’s formula and its first-acknowledged for support.
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